Multi-level stochastic refinement for complex time series and fields: a data-driven approach
نویسندگان
چکیده
Abstract Spatio-temporally extended nonlinear systems often exhibit a remarkable complexity in space and time. In many cases, extensive datasets of such are difficult to obtain, yet needed for range applications. Here, we present method generate synthetic time series or fields that reproduce statistical multi-scale features complex systems. The is based on hierarchical refinement employing transition probability density functions (PDFs) from one scale another. We address the case which PDFs can be obtained experimental measurements simulations then used arbitrarily large datasets. validity our approach demonstrated at example an dataset high Reynolds number turbulence.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولpredicting streamflow using data-driven model and time series
accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. river flow simulations to determine the future river flows are important and practical. given the importance of flow in the coming years, in this research three stations: haji qooshan, ghare shoor and tamar in gorganrood cachment were simulated in 2002-2011. to s...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
A TAYLOR SERIES APPROACH FOR SOLVING LINEAR FRACTIONAL DECENTRALIZED BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING UNDER FUZZINESS
This paper presents a Taylor series approach for solving linear fractional de-centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with asingle decision maker at the upper level and multiple decision makers at the lower level.In the proposed approach, the membership functions associated with each objective(s) ofthe level(s) of LFDBL-MODM are transformed by using a Taylor s...
متن کاملFuzzy clustering of time series data: A particle swarm optimization approach
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2021
ISSN: ['1367-2630']
DOI: https://doi.org/10.1088/1367-2630/abe60e